Axiomatic Topological Quantum Field Theory
نویسنده
چکیده
This dissertation provides an introduction to the ideas employed in topological quantum field theory. We illustrate how the field began by considering knot invariants of three-manifolds and demonstrating the consequences of defining such a theory axiomatically. The ideas of category theory are introduced and we show that what we are actually concerned with are symmetric monoidal functors from the category of topological cobordisms to the category of vector spaces. In two dimensions, these theories are elegantly classified through their equivalence to Frobenius algebras. Finally, we discuss possibly the simplest topological quantum field theory using a finite gauge group to define the fields.
منابع مشابه
Path Integration in Two-dimensional Topological Quantum Field Theory
A positive, di eomorphism-invariant generalized measure on the space of metrics of a two-dimensional smooth manifold is constructed. We use the term generalized measure analogously with the generalized measures of Ashtekar and Lewandowski and of Baez. A family of actions is presented which, when integrated against this measure give the two-dimensional axiomatic topological quantum eld theories,...
متن کاملFactorization Homology of Topological Manifolds
Factorization homology theories of topological manifolds, after Beilinson, Drinfeld and Lurie, are homology-type theories for topological n-manifolds whose coefficient systems are n-disk algebras or n-disk stacks. In this work we prove a precise formulation of this idea, giving an axiomatic characterization of factorization homology with coefficients in n-disk algebras in terms of a generalizat...
متن کاملGromov–witten Classes, Quantum Cohomology, and Enumerative Geometry
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological Field Theories are defined, and it is proved that tree level theories are determined by their cor...
متن کاملAlgebraic Quantum Theory on Manifolds: A Haag-Kastler Setting for Quantum Geometry
Motivated by the invariance of current representations of quantum gravity under diffeomorphisms much more general than isometries, the Haag-Kastler setting is extended to manifolds without metric background structure. First, the causal structure on a differentiable manifold M of arbitrary dimension (d+1 > 2) can be defined in purely topological terms, via cones (C-causality). Then, the general ...
متن کاملar X iv : q - a lg / 9 50 50 26 v 1 2 3 M ay 1 99 5 DIRECT SUM DECOMPOSITIONS AND INDECOMPOSABLE TQFT ’ S STEPHEN SAWIN
The decomposition of an arbitrary axiomatic topological quantum field theory or TQFT into indecomposable theories is given. In particular, unitary TQFT’s in arbitrary dimensions are shown to decompose into a sum of theories in which the Hilbert space of the sphere is one-dimensional, and indecomposable two-dimensional theories are classified.
متن کامل